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Reduction in energy release rate for mode I 
fracture of a fibre with a cracked coating layer due 
to small-scale interfacial debonding 

S. OCHIAI,  M. HOJO 
Mesoscopic Materials Research Center, Faculty of Engineering, Kyoto University, Sakyo-ku, 
Kyoto 606, Japan 

In order to predict the effect of small-scale interfacial debonding on the energy release rate at 
a crack tip for mode I fracture of a fibre with a cracked coating layer, an approximate 
calculation method has been presented. The relation of debonding length, thickness of the 
coating layer and ratio of elastic modulus of the coating layer to that of the fibre, to the 
energy release rate of the fibre was calculated for some examples. It was demonstrated that 
small-scale debonding reduces the energy release rate and, therefore, effectively prevents 
reduction in fibre strength. 

1. Introduction 
When a fibre is coa ted  with low-failure-strain 
material, the strength is sometimes reduced. One of 
the reasons for the reduction could be attributed 
to the propagation of the crack formed by premature 
fracture of the coating layer [1-6]. In this case, 
if the interfacial bonding strength between fibre 
and coating layer is high, the formed notch extends 
into the fibre, and the fibre is broken in Mode I, 
as schematically shown in Fig. la. As a result, 
the strength of the fibre is seriously reduced. On 
the other hand, if the bonding strength is low, debond- 
ing occurs at the interface, as shown in Fig. lb. In 
this case, the crack-tip is blunted and the reduction 
in fibre strength is not serious [3, 7]. However, 
if debonding occurs in a large scale along the length, 
the efficiency of stress transfer from matrix to 
fibre becomes low when fibres are embedded in 
a matrix, resulting in a low strength of composites 
[8, 9]. Thus, in order to prevent reduction in fibre 
strength and also to retain high efficiency of stress 
transfer in composites, small-scale debonding is 
required. 

Although the importance of small-scale debonding 
has been recognized in this field, the relation of 
debonding length to fibre strength has not been 
clarified until now. In the present paper, in order 
to predict the energy release rate for mode I fracture 
of a fibre at the crack tip after small-scale interfacial 
debonding, an approximate calculation method will 
be presented. Some calculation results concerning 
the dependences of the energy release rate on debon- 
ding length, thickness of the coating layer and 
elastic moduli of fibre and coating layer, will be 
shown. 

2. Calculation method 
2.1. Relationship of energy release rate to 

compliance 
The strain energy release rate of a fibre, L, is given by 
[10] 

X = (p2/2) [dC(S)/dS] (1) 

where P is the applied load, C(S) is the compliance for 
crack of area S and dS is the increment of cross- 
sectional area of the crack. In this work, X is calculated 
by modifying Equation 1 into the form 

The C(S) and C(S + AS) are calculated by the method 
shown in Section 2.2, and fracture of the fibre is 
regarded to occur when 

X ~> Xo (3) 

where Zo is the critical strain energy release rate. 

2.2. Modelling 
The shear-lag analysis technique has been known to 
be useful to calculate stress concentrations in the 
fibres adjacent to broken fibres in fibre-reinforced 
composites [11-15]. This technique has also been 
applied successfully to calculate the energy release 
rates for modes I and II for notched multifibre-rein- 
forced plastics by Narin [16] and for a single-fibre 
composite in which a broken fibre is embedded in 
a matrix, by Fukuda [17]. In this analysis technique, 
the stress distribution in the longitudinal direction 
is calculated by ignoring radial and circumferential 
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stresses. On this point, t h i s  technique is not 
rigid. However, for approximate estimation, it is 
known to be useful. Also it has the advantage that the 
calculation procedure is simple. In this work, this 
technique is extended for the following model coated 
fibre. 

The fibre has a radius e f  and length L which is 
taken to be infinite in the calculation, cross-sectional 
area Sf., Young's and shear moduli Ef and a f ,  respec- 
tively, and the coating layer has an outer radius Ro, 
cross-sectional area Sr Young's and shear moduli, 
Eo and Gr respectively. The coating layer with a thick- 
ness a( = R ~ -  Rf) is broken at X = 0, as shown in 
Fig. la. Between Young's, E, and shear, G, moduli, the 
relation 

G = E/J2(1 + v)] (4) 

is assumed, where v is the Poisson's ratio. 
Let us consider the situation where debonding has 

occurred by D in length below and above the crack. 
There are two regions, as schematically shown in 
Fig. lb: region A(X ~> D) where coating layer adheres 
to the fibre, and region B (0 ~< X ~< D) where inter- 
facial debonding has occurred. When interfacial bond- 
ing is strong, region B does not exist and only region 
A exists, as shown in Fig. la. 

The fibre and coating layer are regarded to be 
composed of N1 and N2 elements, respectively, as 
shown in Fig. 2a. The total number of elements is 
N( = N1 + N2). The element in the centre is num- 
bered 1, the next one 2, and then 3, 4 . . . .  , N outwards. 
The cross-sectional area of the i element is given by S~. 
The interface between i - 1 and i elements is expressed 
as the i - 1/i interface. The outer and inner radii of the 
ith element are denoted R~ and R~_ t, respectively, and 
the distance of the centroid from the inner surface of 
ith element as C~, as shown in Fig. 2b. The displace- 
ment from X = 0 of the ith element is denoted U~ and 
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Figure 1 Schematic representation of the non-debonded (A) and 
the debonded (B) regionsl The arrows show the direction of the 
crack propagation. (a) and (b) correspond to the cases without and 
with interfacial debonding between fibre and coating layer, respec- 
tively. 
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that of the interface between i - 1 and i.as U~_ ~/~. The 
Young's and shear moduli of the ith element are 
shown by E~ and G~, respectively. If the ith element 
exists within the fibre, Ei and G~ are given by Ef  and 
Gf, respectively, while, if it exists within the coating, 
they are given by Er and G~, respectively. 

2.3. Equat ions for stress equ i l ib r ium 
For  Region A, the interracial shear stress at the i/i + 1 
interface, %~ § i, is approximately given by [18] 

"ci/i+ l = Gi (Ui / i+  l - -  Ui)/(Ri - Ci - R i -1 )  

= G i + l ( U i +  1 - -  U i l i + l ) t C i - i -  1 (5) 

Eliminating Uui + 1 in Equation 5, we have 

xi/i+l = Hi(Ui+l  -- Ui) (6) 

H~ = G, Gi+t/[G~C~+I + G i + I ( R I  - -  C i - -  R~-t)] (7) 

For  region B, the shear stress %~.l.t for i # N1 is also 
given by Equation 5, and the shear stress "CN~/N~ + t is 
given by zero. The forces acting on the ith element are 
shown in Fig. 2b where P~ is the load at X = X in the 
longitudinal direction. The equations for stress equi- 
librium for regions A and B are given as follows. 

Region A 

S I E a ( d Z U t / d X  2) + 2xRl~t l2  = 0 (8) 

SiEi(d 2 U i / d X  2) + 2x 

(Ri 'c l / i+t  - -  R i - l ' C i - 1 / i )  = 0 (i = 2 to N - -  1) (9) 

SNEN(d2UN/dX 2) -- 2 ~ R N - I  ~ - ~ I N  = 0 (10) 

Region B 

S I E I ( d Z U 1 / d X  2) + 2xRKct/2 = 0 (11) 

S iE i (dzUi /dX  2) + 2~ 

(R/cm+ ~ ~-  R i -  t'c~- t/i) = 0 

(i = 2 to N1 - 1) (12) 
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uracKec ~ ' ~ - ~ -  ".\~-L~g: t I ' l  [ ,4 x 
coat ing ~ f ~ ! , ; ~ , ~  10  ,,, , u, 
, a y e r  - i 

, F N ; 

:" ",~.~i--'=&~',5 '- '2-" . . . . . . . . .  . '~ '5/- 'Centro d 
{h'~{a:,%.,~,' ~)})l}ll / ~ _  .. 

interface ~ interface 
P, 

(a) (b) 

Figure 2 (a) Modelling for application of shear lag analysis. The 
fibre and coating layer are divided into N1 and N2 cylindrical 
elements, respectively. (b) Equilibrium of force in the ith element. 



SN1EN1 (d 2 U N 1 / d X  2) + 27~ 

( - - R N I - I " C N I - 1 / N 1 )  = 0 (13) 

S N t + I E N I + I ( d 2 U N I + I / d X  2) q- 2~ 

( R N I + I " G N I + I / N I + 2 )  = 0 (14) 

S iE i (d2Ui /dX  2) + 2~ 

(Ri'ci/i+ 1 - -  R i _  l T.i_ l/i)  = 0 

(i = N1 + 2 to N - 1) (15) 

SNEN(d2UN/dX 2) + 27t(--RN_a'CN_l/N) = 0 (16) 

2.4. Non-dimensionallization 
In order to obtain a convenient form for the problem, 
a non-dimensionallization has been performed in the 
shear lag analysis [11-17]. In this work, the ordinary 
expression of non-dimensionallization was modified 
for the present problem as follows 

R i = R f r  i (17) 

Ci = Reci (ci = [(r 2 + r2- , ) /2]  1/2 - r i-1)  (18) 

(hi = 

S i = S f s  i = TcRfsi (19) 

Ei = E f e i  (20) 

G i = G f g  i (21) 

H i  = G f h l / R f  

g i g i + l / [ g i c i + l  + g i + l ( r l  - -  Ci - -  r i - t ) ] )  (22) 

Ui(i = 1 to N) = cyfRf{1/(EeGf)}l/2ui (23) 

X = R f ( E f / G f ) l / 2 x  (24) 

L = R f ( E f / G f ) l / 2 1  (25)  

D = Rf(Ef /Gf) l /ed  (26) 

where (yf is the average fibre stress at X = 0 ( = net 
fibre stress), ri, ci, &, el, ,9i, hi, ul, x, I and d are 
non-dimensionallized forms of Ri, Ci, Si, Ei, Gi, Hi, 
U~, X, L and D, respectively. 

Under this non-dimensionallization, dudx) /dx  
(denoted Kdx))  is given by 

Ki(x) = dui /dx  = { d U i ( X ) / d x } / ( o f / E f )  (27) 

Equation 27 shows that Kz(x) is the magnitude of 
strain normalized with respect to the average strain of 
a fibre at x = 0. Substituting Equations 17 26 into 
Equations 8-16, and letting 

2rihj(eisi) = ml (28) 

2ri-  lhi-1/(eisi)  = ni (29) 

we have following simplified equations. 

Region A 

dZua/dx 2 + m l ( u 2 -  ul) = 0 (30) 

d 2 u i / d x  2 + miu i+ 1 - -  (m i q- n i ) u  i + n iu i_  1 = 0 

(i = 1 to N - 1) (31) 

d2uN/dX 2 - nN(UN -- UN-1) = 0 (32) 

Region B 

d Z u l / d x  2 q- m l ( u  2 - -  u l )  = 0 (33) 

d e u i / d x  z q- miu i+ 1 - -  (m i -1- n i ) u  i -]- FliUi_ 1 = 0 

(i = 2 to N1 - 1) (34) 

d i U N 1 / d x  2 - -  I ~ N I ( U N I  - -  U N I - 1 )  = 0 (35) 

d 2 u m + l / d x  z + m N I + I ( U N I + 2  --  U N I + I )  = 0 (36) 

d2ui /dx  2 + rnlui+l - (mi + nl)ul + niui-1 = 0 

(i = N1 + 2 t o N - l )  (37) 

d2uN/dx 2 - nN(UN -- UN-1) = 0 (38) 

2.5. General solution of ui 
When L is taken to be large enough, the strain of all 
elements d U i ( X ) / d X  at X = L/2  are equal to each 
other, given by 

d U i ( Z  = L /2 ) / dX  = R 2 (yf/[R2f E f  ~- (R 2 -- R2)Ec  ] 

(39) 

Substituting Equation'39 into Equation 27, we have 

K i ( X  = L/2) = R ~ / [ R  2 + (R 2 -  RZf)(Ec/Ef)] 

(i = 1 to N) (40) 

The general solutions of uis for regions A and B are 
given as follows under the condition of Equation 40. 

Region A 

N - 1  

u A = ~ AjBi ,  j e x p ( - k j x )  
j = l  

+ {R2/[R~ + (R~ -- R~)(Ec/Ef)] x + AN 

(41) 

where Ajs are unknown constants, (kj)2s (kj > 0) are 
eigen values except zero for the matrix TN given by 

m 

m 1 - -  m 1 

- -  / ' / 2  m2 -}- n2 - -  m2 

. . . . . .  _ . n 3 . .  m3..+ .n3.. 

0 
m 

.~ m. 3. 
0 

- -  t / N  1 R / N  - 1 " ~  n N  - 1 - -  mN - -  1 

- -  Y/N n N  

(42) 
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and B~,js are constants  given by 

B L j = I  ( j  = l t o N - l )  

Bz,j = ( 1 - -  k 2 / m l ) B l , j  ( j  = 1 t o N - - l )  

Bid = (1 + ni-1/rni-1 -- k2 /mi-1)Bi - l , j  

- - (n i -1 /mi-1)Bi-2 , j ( i  = 3 t o N ,  j = l t o N - 1 )  

(45) 

Region B 

2(Nt  ~) 

. f =  Z 
j = l  

(i = 

(43) 

( i  

(44) 

CjDi,jexp(vjx) + C 2 N I - I X  -[- C 2 N  1 

1 to N1 (fibre elements)) (46) 

2N1 +2(N2- -  1) 

Z c o, jexp{w x} + c., x + 
j = 2 N I + I  

= N1 + 1 to N (coating elements)) (47) 

where Cjs are u n k n o w n  constants ,  (vj)2s and (wj)Zs 
are eigen values except zero for the following matr ices  
TNI and TNz, respectively. 

2 .6 .  B o u n d a r y  c o n d i t i o n s  
The  u n k n o w n  constants ,  Aft  ( j  = 1 to N) in the case 
of  no debonding,  and  Ajs ( j  = 1 to N)  and Cjs (j  = 1 
to 2N) in the case of  debonding,  could be solved f rom 
the following b o u n d a r y  conditions.  F o r  the present  
aim, the following situations (i)-(iii) were taken  for the 
reason given later. In this section, only the condit ions 
for the case of debonding  are shown. Fo r  the case of  
no debonding,  the same condi t ions can be used by 
setting d = 0. 

Si tuat ion (i): no fibre elements are b roken  

uP(0) = 0 f o r i  = l t o N 1  (56) 

Kp(0) = 0 f o r i  = g l + l t o N  (57) 

up(d) = uA(d) for i = 1 t o N  (58) 

Kp(d) = K) (d)  for i = l t o N  (59) 

Si tuat ion (ii): the f ibre  element  N1 is b roken  

u~(0) = 0 f o r i  = 1 t o N l - - 1  (60) 

KB(0) = 0 f o r i  = N l t o N  (61) 

Equat ions  58 and  59. 

i 

m 1 - -  m 1 

- -  n 2  m 2 + n 2 - -  m 2 0 

- -  n 3  m 3  - } -  / / /3  - -  m 3  

- -  YIN1--2 r a N 1 - 2  "j- / ~ N 1 - 2  - -  m N 1 - 2  

0 - -  n N 1 -  1 n N l - 1  

(48) 

I 
m N l + l  - -  m N l + l  

- -  / / /N1+2 r a N 1 + 2  "-1- n N l + 2  - -  m N l + 2  0 

- - H N I +  3 m N l + 3 - l - n N l + 3  - -  m N l + 3  

- -  n N - 1  m N -  t -}- n N - 1  - -  m~v- ~ 

0 - nN nN 

(49) 

and Dl,js are constants  given by 

DI,j = l ( j  = 1 t o 2 ( N l - 1 ) )  (50) 

D2,j = ( 1 - -  v~ /ml )Dt , j  ( j  = 1 to 2 ( g  l - -1 )  ) 

(51) 

Di, j = (1 + ni_l /mi_l  - v2/mi_l)Di_l , j  

--(ni_l/mi_l)Di_e,;(i = 3 to N1, 

j = 1 to 2(N1 - 1)) (52) 

DNI+~j  = 1 ( j  = 2 N l + l t o 2 N l + 2 ( N 2 - 1 ) )  

(53) 
= --wj /mNl+l)Dm~-~, j  D N I + 2 , j  (1 2 

( j  = 2N1 + 1 to 2N1 + 2(N2 - 1)) (54) 

Di,j = (1 + ni-1/mi-a -- w~/mi-1) 

D i _  l, j - -  (ni_ l / m i _  l )D i_  2, j 

(i = N1 + 3 t o N ,  j -- 2N1 + l t o 2 N l + 2 ( N 2 - - 1 ) )  

(55) 
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Situation (iii): the fibre elements N1 and N1 - 1 are 
b roken  

u~(0) = 0 f o r i  = 1 t o g l - 2  (62) 

Kp(0) = 0 f o r i  = N I - - 1  t o N  (63) 

Equat ions  58 and  59. 

2 .7 .  S t r a i n  e n e r g y  r e l e a s e  r a t e ,  )~ 
Assuming tha t  L is large, exp( - kill2) in Equa t ion  41 
is nearly zero, where l is a non-d imens iona l  form of 
L given by Equa t ion  25. In  such a situation, the 
non-d imens iona l  d isplacement  of  all fibre elements at 
x = l/2 is given by [R2/{R 2 + (R2~- R~)(Ec/Ef)}]  
(//2) + AN. Denot ing  the non-dimens ional  displace- 
men t  at x = I/2 for crack area  S as u(S) and the non-  
dimensional  value of AN for crack area  S as AN(S), 
u(S) is expressed as 

u(S) = [R]/{R} + (R~ - R~) 

(Ec/EO}] (//2) + As(S) (64) 



The non-dimensional displacement, u(S), is converted 
to a real one, U(S), via Equation 23 as follows 

U(S)  = . ( S ) ( y f R f [ 1 / ( e f G f ) ' ]  1/2 (65) 

The compliance for crack area S, C(S), is then given by 

C(S) = 2U(S)/P (66) 

where P is the applied load. Now let the crack propa- 
gate by AS. For  crack area S + AS, the compliance 
C(S + AS) is given by 

C(S + AS) = 2U(S + AS)/P (67) 

Setting P = ~ R 2 ere and combining Equations 23, 
64-67 with Equation 2, we have 

~,/(5~ = TC R 2 [1/ (EfGf)]  1/2 

lira rtRf{[AN(S+AS)--AN(S)]/AS}) (68) 
A S - - + 0  

L/or 2 is independent of cyf. In the present work, ~/~2 
was calculated as follows. S was taken to be the 
cross-sectional area of the coating layer and AN(S) was 
calculated by using the boundary conditions for Situ- 
ation (i). Next, AS (described as AS1) was taken to be 
the cross-sectional area of N1 element (AS1 = SN1), 
and the unknown constant AN(S + AS1) was obtained 
by using the boundary conditions for Situation (ii). 
Then AS(AS2) were taken to be the sum of the cross- 
sectional area of N1 and N1 - 1 elements and the 
unknown constant AN(S + AS2) was obtained by using 
the boundary conditions for Situation (iii). The value of 
X/o~ was calculated from Equation 68 with the linear 
extrapolation of [AN(S + AS) - AN(S)]/AS to AS = 0. 

In the present work, R f  w a s  taken to be 5 gm, and 
a and D were varied up to 1 and 3 gm, respectively. 
The calculation was carried out for the combinations 
of (A) E f = 2 0 0 G P a  and E c = 4 0 0 G P a  and (B) 
Eiy = 400 G P a  and E~ = 200 GPa.  The former repres- 
ents the case where the coating layer has higher elastic 
modulus than the fibre and the latter the reverse case. 
For  calculation of fibre stress at which the crack 
propagates into the  fibre at X = 0, Lo was taken to be 
3 J /m -2. The Poisson's ratios of both fibre and 
coating layer were assumed to be 0.3. N1, N2 and 
S~(i = 1 to N) were taken as follows, due to the limit- 
ing capacity of the computer  used. N2 was taken to be 
12. N1 was taken to be the integer of R2N2/ 
[(Re + a)  2 - -  Rg] when R~N2/[(Rf + a)  2 - -  R 2] < 41 
and 41 when R~N2/[(Rr + a) 2 - R 2] > 41. In both 
cases, Si was taken to be equal for i = 2 to N and 
$1 was taken to be the residual. This kind of simplifi- 
cation in the shear-lag analysis has been known to 
give a fairly good description of stress concentrations 
at a notch tip [13, 14]. 

. 

4.1. Influence of interfacial debonding on 
energy release rate at X =  0 

Fig. 3 shows the influence of interfacial debonding 
length on the variation of )~/r~f 2 at X = 0 as a function 
of a for case (A) (El = 200 G P a  and Eo = 400 GPa). 
Figs 4 and 5 show the variation of)~/cy~ and the energy 
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Figure 3 Influence of interracial debonding length on the variation 
of)~/cr ] at X = 0 as a function of thickness of the coating layer, a, for 
case A (Ef = 200 G P a  and Er = 400 GPa). 
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Figure 4 Variation of)~/c~ 2 as a function of debonding length, D, for 
(1-3) Ef = 200 GPa,  Er = 400 GPa,  (4-6) Ef = 400 GPa,  Ec = 
200 GPa.  a: (1, 4) 0.1 jam, (2, 5) 0.3 jam, (3, 6) 0.6 jam. 

release rate, )~, normalized with respect to that for  
D = 0 (rio debonding) ~.o, respectively, as a function of 
D for various combinations of the values of a, Er and 
Eo. The following features can be read from Figs 3-5. 

1. For  a given thickness, a, the longer the debond- 
ing length, D, the smaller becomes )~/c~2; namely, the 
interracial debonding reduces the energy release rate 
at X = 0 and the energy release rate is reduced with 
increasing debonding length. Even when D is small, 
the energy release rate is reduced effectively. 

2. For  a fixed interfacial debonding length, the 
;~/cy 2 increases with increasing a. This indicates that 
when the coating layer is thick, a long debonding 
.length is required to realize much reduction in energy 
release rate. 

3. In case (A) ( E l  = 200 G P a  and Eo = 
400 GPa), the X/cy 2 at D = 0 (no debonding) is high 
and also it requires long debonding to achieve low 
energy release rate, while in case (B) (Ef = 400 G P a  
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Figure 5 Variation of energy release rate of a fibre at X = 0, Z, 
normalized with respect to that  for no debonding (D = 0), Lo, as 
a function of debonding length D. Curves 1-6 as in Fig. 4. 

and E~ = 200 GPa), the ;L/~ at D = 0 (no debonding) 
is low and it requires a relatively short debonding 
length to achieve a low energy release rate. This means 
that in the case of low-modulus fibre with high- 
modulus coating layer, the strength is low at D = 0 
and also even after debonding, the strength cannot 
become high unless the debonding length becomes 
long. 

4. The relative reduction rate of the energy release 
rate (X/X0) is high when the thickness of the coating 
layer is large, Ef is low and E~ is high. 

4.2. Stress of the fibre at propagation 
of the crack at X =  0 

4.2. 1. Stress o f  the fibre at propagat ion o f  
the crack at X = 0 when no interfacial 
debonding occurs 

Fig. 6 shows the variation of fibre stress, cy*, at which 
the formed crack propagates into the fibre at X = 0. 
In addition to the variations for cases (A) and (B), the 
variations for the cases of Ee = E~ = 200 and 400 G P a  
are presented in order to compare the calculation 
results based on the linear elastic fracture mechanics 
(LEFM). The following features can be read. 

1. According to the L E F M  [10], ifEe is equal to E~, 
the fibre strength for the plain strain condition will be 
given by 

c~* = (l/Y) {EfXr - v 2) (r~a)]} 1/2 (69) 

where Y is the finite width correction factor. The 
broken curves show the calculation results based on 
Equation 69. The difference in c~* values between the 
present method and L E F M  is about 10%. This means  
that the present method is not rigid, but it can be used 
to a first approximation. 
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Figure 6 Variation of fibre strength at X = 0, c~*, as a function of 
thickness of the coating layer, a, for the case where no interfacial 
debonding occurs. (1) Ef = 200 GPa,  Ec = 400 GPa; (4) Ef = 
400 GPa,  Ec = 200 GPa.  Curves 2 and 3 show the calculation 
results based on the linear elastic fracture mechanics for the case of 
E c = E f = ( 2 )  200 and (3) 400GPa .  Taking the case of E l =  
400 GPa,  Ec = 200 G P a  and an original fibre strength cyf ~ = 3 G P a  
(curve 4) as an example, the practical strength of the fibre at X = 0 
varies along ABC. In this case, below the critical thickness of the 
coating layer at B, ac, the fibre strength at X = 0 is given by crow. 

2. In the case of Ef  = Ec ,  when the fibre has high 
elastic modulus, cy* becomes high, as anticipated from 
Equation 69. It is suggested that if a high-modulus 
fibre is employed, the reduction in fibre strength is 
relativeiy small in comparison with that in low- 
modulus fibre, if the Xo value is the same. 

3. When a is very small, cy* becomes higher than 
the original strength (denoted o (~fu). In such a range of 
a, the fibre strength is determined by the intrinsic 
defects contained in the fibre. Then, the strength will 
not be given by c~  but by cyfu.~ Namely, defining the 

0 thickness, which satisfies cy~ = cyfu , as ac, the strength 
will be given by o cyfu for a < ac and by cy~ for a > ac. If 

o is taken to be 3 GPa, the strength for the case of CYfu 

Ef = 400 GPa  and E~ = 200 G P a  will not be reduced 
below the thickness corresponding to B and it will be 
reduced along BC, as shown in Fig. 6. 

4. The strength of fibre is reduced much when Ef is 
low and E~ is high. On the other hand, the reduction is 
relatively small when Ef is high and Eo is low. This 
means that if interfacial bonding is too strong to 
prevent interfacial debonding, low-modulus fibre with 
a high-modulus coating layer cannot achieve high 
strength when the failure strain of the coating layer is 
very low in comparison with that of the fibre. 

4.2.2. Stress o f  a fibre at propagat ion o f  
the crack at X =  0 when interfacial 
debonding occurs 

Fig. 7 shows the influence of interfacial debonding 
length D on the variation of fibre stress, c~,  at the 
propagation of the crack into a fibre at X = 0 as 
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Figure 7 Influence of interracial debonding length, D, on the vari- 
ation of fibre strength at X = 0, ~*, as a function of thickness of the 
coating layer, a, for (a) Ef = 200 GPa and Ec = 400GPa, and 
(b) Ef =400GPa and E~ =200GPa. Taking the case of 
c~f~ = 3 GPa, Ef = 400 GPa and E~ = 200 GPa, the practical fibre 
strength at X = 0 varies along ABC when no interracial debonding 
occurs (D = 0), but it varies along ADE when the debonding length 
is 0.3 ~tm. 

5 I )l / , / i 
i 1 i 2 ~4 (5) (6) ;L~=3J rn 

t VI J/ 4 r 

I 111 
1 )/ B 

*ff 2 

1 

0 1 2 3 
D(#m) 

Figure 8 Increase in fibre strength at X = 0 with increasing inter- 
facial debonding length D. Taking the case of ~f0, = 3 GPa, a = 0.6, 
gm, Ef = 200 GPa and Ec = 400 GPa (curve 3), the practical 
c~* value varies along ABC. In this case, beyond the critical debond- 
ing length at B, De, the fibre strength at X = 0 is given by cyf~ 
Curves 1 6 as in Fig. 4. 

a function of  thickness of  the coat ing layer a for 
(a) Ef = 200 G P a  and Eo = 400 GPa ,  and 
(b) E f  = 400 G P a  and E~ = 200 GPa.  Fig. 8 shows 
the variat ion of  c~* with increasing interracial debond-  
ing length, D. Figs 7 and 8 show that  (i) the longer the 
debonding length, D, the higher becomes c~  for 
a given thickness, a, (ii) ~ decreases with increasing 
a for a fixed interfacial debonding length, and 
(iii) when the ratio o f  Ec/Ef  is high, c ~  is low for given 
values of  a and D. 

The calculated values of  c~*, however, do not  cor- 
respond to practical values, because in the range of 

o (original fibre strength without  coating ( ~  > ( Y f u  

layer), the fibre stress at fracture is determined by the 

E 
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Figure 9 Variation of the critical debonding length, D~, as a func- 
tion of thickness of the coating layer, a, for case A, Er = 200 GPa 
and E c = 4 0 0 G P a ,  and for case B, E f = 4 0 0 G P a  and E~= 
200 GPa. 

intrinsic defects contained in the fibre as stated in 
0 = 3 GPa,  Section 4.2.1. Taking the case of  ~fu 

Ef = 400 G P a  and Ec = 200 G P a  in Fig. 7b as an 
o up to B and example, because ~* is higher than cyf, 

D for D = 0 and 0.3 gm, respectively, the practical 
o value. In these ranges, cy~' value cannot  exceed the c~f, 

~* is given by ~fu-~ As a result, the practical cy} ~ varies 
along ABC when no interracial debonding occurs 
(D = 0) and it varies along A D E  when debonding 
length is 0.3 gm. 

o = 3 G P a ,  a = 0 . 6 g m ,  Also taking the case of  Cyfu 
Ef = 200 G P a  and Ec = 400 G P a  (curve 3 in Fig. 8), 
the practical cy~ value varies along ABC. In  this case, 
the debonding length at B corresponds to the critical 
debonding length De, below which practical value of  
cy* is given by ~e,.~ Fig. 9 shows the variat ion of De as 
a function of  thickness of the coat ing layer a for case 
(A) Ef  = 200 G P a  and E~ = 400 GPa,  and  for case 
(B) E f  = 400 G P a  and E,  = 200 GPa .  It  is suggested 
that, the thicker the coating layer, the longer the 
debonding length which is required to recover the 
strength of  fibre, especially when the elastic modulus  
of the coating layer is higher than that  of  the fibre. 

5. C o n c l u s i o n s  
1. The energy release rate decreases with increasing 

debonding length. It  is emphasized that  the energy 
release rate is effectively reduced by small-scale de- 
bonding. 

2. The energy release rate increases with increasing 
thickness of the coating layer for a given debonding 
length. 

3. The higher the ratio of Young 's  modulus  of the 
coating layer to that  of the fibre, the higher the energy 
release rate becomes. 

4. The strength of fibre at X = 0 increases with 
increasing debonding length below a critical debond-  
ing length, beyond  which it is given by the original 
fibre strength. 

2033  



Acknowledgement 
The authors thank The ministry of Education Science 
and Culture of Japan for the Grant-in-Aid (no. 
06452320). 

References 
1. A.G. METCALFE and M. J. KLEIN, in "Interface in Metal 

Matrix Composites", edited by A. G. Metcalfe (Academic 
Press, New York, 1974) pp. 125 68. 

2. J .A. DICARLO, in "Proceedings, Mechanical Behaviour of 
Metal/Matrix Composites", edited by J. E. Hack and M. F. 
Amateau (AIME, Worrendale, PA, 1983) pp. 1-14. 

3. S. OCHIAI, K. OSAMURA and Y. MURAKAMI, in "Pro- 
gress in Science and Engineering of Composites", edited by T. 
Hayashi, K. Kawata and S. Umekawa, (Japan Society for 
Composite Materials, Tokyo, 1982) pp. 1331-8. 

4. I .H.  KHAN, Metall. Trans. 7A (1976) 1281. 
5. W.H. HUNT Jr, in "Interfaces in Metal-Matrix Composites", 

edited by A. K. Dhingra and S. G. Fishman (Metallurgical 
Society, Warrendale, PA, 1986) pp. 3-25. 

6. M. Kh. SHOROSHOROV, L. M. USTINOV, A. M. ZIR- 
LIN, V. I. OLEFILENKO and L. V. VINOGRADOV, J. 
Mater. Sci. 14 (1979) 1850. 

7. S. OCHIAI, S. URAKAWA, K. AMEYAMA and Y. 
MURAKAMI, MetaIL Trans. l lA  (1980) 525. 

8. S. OCHIAI and K. OSAMURA, J. Mater. Sci. 23 (1988) 886. 
9. Idem, Metall. Trans. 21A (1990) 971. 

10. H. TADA, P. C. PARIS and G. R. IRWIN, in "The Stress 
Analysis Handbook", edited by H. Tada, P. C. Paris and 
G. R. Irwin (Del Research Corporation, Hellertown, PA, 1973) 
pp. 1~1. 

11. J .M. HEDGEPETH, NASA TN D-882 (1961). 
12. S. OCHIAI and K. OSAMURA, J. Mater. Sci. 24 (1989) 3865. 
13. C. ZWEBEN, En 9. Frac. Mech. 6 (1974) 1. 
14. E.D.  REEDY Jr, Mech. Phys. Solids 28 (1980)265. 
15. J.G. GOREE and R. S. GROSS, Eng. Fract. Mech. 13 (1980) 

563. 
16. J.A. NARIN, J. Compos. Mater. 22 (1988) 561. 
17. H. FUKUDA, in "Achievement in Composites in Japan and 

the United States", Proceedings of Japan-US CCM-V, edited 
by A. Kobayashi (Japan Society for Composite Materials, 
Tokyo, 1990) pp. 529-34. 

18. N. F. DOW, GEC Missile and Space Division, Report 
R63SD61, quoted by G. S. Holister and C. Thomas, in "Fiber 
Reinforced Materials" (Elsevier, London, 1966) p. 23. 

Received 28 April 
and accepted 23 November 1995 

2034 


